8.3.3 SHM Energy in the x-domain

From \displaystyle v=\pm \omega \sqrt{{{{x}_{0}}^{2}-{{x}^{2}}}} , we can write \displaystyle KE=\frac{1}{2}m{{v}^{2}} as

\displaystyle \displaystyle KE=\frac{1}{2}m{{\omega }^{2}}({{x}_{0}}^{2}-{{x}^{2}})

We can then write PE as

\displaystyle \displaystyle \begin{aligned}PE&=TE-KE\\&=\frac{1}{2}m{{\omega }^{2}}{{x}_{0}}^{2}-\frac{1}{2}m{{\omega }^{2}}({{x}_{0}}^{2}-{{x}^{2}})\\&=\frac{1}{2}m{{\omega }^{2}}{{x}^{2}}\end{aligned}

A few things to note.

  1. Both KE and PE are quadratic graphs and are mirror image of each other
  2. The graphs intersect at \displaystyle E=\frac{1}{2}TE , \displaystyle x=\pm \frac{{{{x}_{0}}}}{{\sqrt{2}}}.

USEFUL RESOURCES

Leave a comment